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Abstract: 

 A microelectronic device usually contains sharp features (e.g., edges and corners) that 

may intensify stresses, inject dislocations into silicon, and fail the device.  We describe a method 

to analyze dislocation injection on the basis of singular stress fields near the sharp features, and 

apply the method to interpret available experiments of nitride pads on silicon substrates. 
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 Stresses inevitably arise in a microelectronic device due to mismatch in coefficients of 

thermal expansion, mismatch in lattice constants, and growth of materials.  Moreover, in the 

technology of strained silicon devices, stresses have been deliberately introduced to increase 

carrier mobility; see Ref. [1] for a review.  A device usually contains sharp features like edges 

and corners, which may intensify stresses, inject dislocations into silicon, and fail the device. 2,3  

On the basis of singular stress fields near the sharp features, this letter describes a method to 

obtain conditions that avert dislocations.  

 We illustrate the method using an idealized structure shown in Fig. 1.  A blanket film of 

silicon nitride (Si3N4), of thickness h and residual stress σ , is grown on the (001) surface of a 

single-crystal silicon substrate.  The film is then patterned into a stripe of width L, with the side 

surfaces parallel to the  plane of silicon.  The structure is similar to those used in Refs. [4-

9].  Here we use a long stripe, rather than a square pad, so that we can focus on the essentials of 

the method without the complication of three-dimensional corners of the pad.  The latter will be 

considered elsewhere.     

)110(

When the film covers the entire surface of the substrate, the film is under a uniform 

stress, and the substrate is stress free.  When the film is patterned into a stripe, stress builds up in 

the substrate, and intensifies at the roots of the edges.  It is this intensified stress that injects 

dislocations into the silicon substrate.   

 Early models of the stress field near an edge of a film have been reviewed in Refs. [5,6].  

One model, for example, replaces the edge with a concentrated force acting on the surface of the 

substrate. 5,7,8  Not surprisingly, the resulting stress field is inaccurate at a distance smaller than 

the film thickness, as demonstrated by a finite element analysis. 9  
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 We will study the stress field using a method developed by Williams 10, Bogy 11 and 

others.  The method has also been used to analyze the nucleation of a misfit dislocation from the 

edge of an epitaxial island.12  In Fig. 1, a polar coordinate system ( )zr ,,θ  is centered at the root 

of an edge. The stress field around the root is singular and takes the form  

   ( )
( )

( )θ
π

θσ λ ijij r
kr Σ=

2
, . (1) 

The exponent λ  is between 0 and 1, and the angular distribution ( )θijΣ  is normalized such that 

.  Both ( ) 10 =Σ θr λ  and  will be solved by an eigenvalue problem. ( )θijΣ

 The quantity k  is known as the stress intensity factor.  Linearity and dimensional 

consideration dictate that k should take the form  

  ( )hLfhk /λσ= . (2) 

The stress intensity factor scales with the residual stress σ  and with ; the dimensionless 

function  will be determined by using a finite element method.   

λh

( hLf / )

 The actual stress field around the root deviates from equation (1) within a zone, known as 

the process zone, because materials deform inelastically and because the root is not perfectly 

sharp.  We are interested in a conservative condition for dislocations to be emitted, and assume 

that the root is atomistically sharp.  Consequently, the size of the process zone should be on the 

order of the Burgers vector b.   The actual stress field also deviates from (1) at size scale  

and beyond, where the boundary conditions affect the stress distribution.  Provided the process 

zone is significantly smaller than the film thickness, 

hr ~

hb << , the stress field (1) prevails within an 

annulus, known as the k-annulus, of some radii bounded between b and h. 

 We now paraphrase a fundamental idea in fracture mechanics.13  The overall loading is 

set by the residual stress and the geometry of the stripe, while the atomic process of emitting 
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dislocations occurs within the process zone.  The effect of the overall loading on the atomic 

process is characterized by a single parameter:  the stress intensity factor k.  Consequently, 

dislocations are emitted from the root when the stress intensity factor reaches a critical value, 

= .  The value of  is a constant specific to the materials and the wedge angle (90k ck ck 0 in this 

letter), but is independent of loading (e.g., the residual stress) and overall geometry (e.g., the 

thickness and the width of the stripe).     

 In the numerical examples below, we take shear modulus and Poisson’s ratio of Si3N4 to 

be 54.3 GPa and 0.27, and those of silicon 68.1GPa and 0.22.  Both materials are taken to be 

isotropic since anisotropy in the elasticity of silicon plays little role in the singular stress field. 14  

 We determine the exponent λ  and the functions ( )θijΣ  by solving an eigenvalue 

problem. 10, 11  Two values of the exponent λ  are found, 0.4514 and 0.0752.  Consequently, the 

stress field is a linear superposition of the two singular fields, one stronger and the other weaker.  

Following a similar discussion in Refs. [15-17], we find that the weaker singular term makes 

about 5% contribution to the total stress field.  Hence, the stronger singular field dominates the 

stress field, which is expressed by equation (1) with 4514.0=λ . The corresponding angular 

functions in silicon are 

 ( ) ( ) ( ) ( ) ( )[ ] ( )[ ]{ }λθλθλθλθλλλθ cossin22cos2sin21 DCBArr +++−+−−−−=Σ , (3a) 

 ( ) ( )( ) ( ) ( )[ ]λθλθθλθλλλθθθ cossin2cos2sin21 DCBA ++−+−−−=Σ ,  (3b) 

 ( ) ( ) ( ) ( ) ( )[ ] [ ]{ }λθλθλθλθλλλθθ sincos2sin2cos21 DCBAr −+−−−−−=Σ , (3c) 

 ( ) ( )[ ]λθλθλνθ cossin14 DCzz +−−=Σ 0, =Σ=Σ zrz θ , (3d) 

with , , , and 9874.0=A 3534.0=B 6503.0−=C 8348.1=D .  
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 We calculate the full stress field in the structure by using the finite element package 

ABAQUS, then fit the interfacial shear stress close to the root, say , to the 

equation , with k  as the fitting parameter.  The resulting value of k is plotted in 

Fig. 2 as a function of the aspect ratio of the stripe.  The trend in this figure is readily understood.  

Although the stress field intensifies at the root, the side surface of the stripe is traction-free.  

When the stripe is very narrow, , the stress in the stripe is almost fully relaxed, and 

.  When the stripe is very wide, 

23 10/10 −− << hr

( )λθ πσ rkr 2/=

0/ →hL

0→k ∞→hL / , the stress field near one edge of the stripe no 

longer feels the presence of the other edge, and k attains a plateau.  

 Upon setting k =  in equation (2), we note that the critical condition for the root to emit 

dislocations depends on the residue stress 

ck

σ  and the feature sizes h and L.  For a given 

deposition process, the magnitude of the residual stress in the blanket film, σ , is fixed. 

According to equation (2), it is more likely for the root to emit dislocations when the stripe is 

thicker and wider.   

 Emitting a dislocation is a thermally-activated atomic process, an analysis of which is 

beyond the scope of this letter.  A crude estimate of , however, can be made by letting the 

resolved shear stress 

ck

nbτ  at distance br = , calculated from equation (1), equal the theoretical 

shear strength thτ .  For a given slip system with the Burgers vector  and the unit normal vector 

 of the slip plane, under a general state of stress 

ib

in ijσ , the resolved shear stress is 

bbn jiijnb /στ = .  Of the twelve slip systems in Fig. 1, the two systems ( )[ ]1011112
1  and 

( )[ ]1101112
1  are found to have the largest resolved shear stress, given by  

  ( )
( )

( ) 030cos
2

θ
π

τ θλ rnb r
kr Σ= .  (4) 

11/14/2006   7:32:45 PM 5



For the (  plane, , giving )111 027.125−=θ 0317.1−=Σ θr . 

The theoretical shear strength can be estimated by µτ 2.0=th , where µ  is the shear 

modulus of silicon.18  Setting ( ) thnb b ττ = , we obtain that an estimate of the critical stress 

intensity factor:  

  . (5) λµbkc 5.0=

We may as well view equation (5) as a result of a dimensional analysis, leaving the pre-factor 

adjustable by any specific atomic process of emitting a dislocation.  

 A combination of equation (2) and (5) gives a scaling relation between the critical stress 

and the feature sizes: 

  ( )
λµσ ⎟
⎠
⎞

⎜
⎝
⎛=

h
b

hLfc /
5.0 . (6) 

From Fig. 2, when the aspect ratio of the Si3N4 stripe varies from 1 to ∞ ,  the function ( )hLf /  

varies in the range .  Taking 48.02.0 −=f 1.68=µ  GPa, 83.3=b Å and µm, the critical 

residue stress varies in the range 

1=h

GPa03.2GPa9.4 −=cσ .  If 100=h nm, however, the critical 

stress varies in the range GPa75.5GPa8.13 −=cσ . 

In an experiment by Kammler et al 4, a Si3N4 film, of thickness 500 nm and residual 

stress 6 GPa, was grown on a silicon substrate, and was then patterned into large ( m01m01 µµ × ) 

and small ( m1m1 µµ × ) square pads.  Kammler et al showed that dislocations emitted from the 

large pads, but not from the small ones.  According to our equation (6), the critical stresses for 

the two cases are 2.8 GPa and 5.0 GPa, respectively. 

 Isomae7 reported that dislocations emitted from the edges of a  Simm3mm3 × 3N4 pads of 

thickness 200 nm under residual stress 0.92 GPa.  The critical residual stress predicted from 
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equation (6) is 4.2 GPa.  Isomae also observed that dislocations injected into the region of the 

substrate not covered by the pad, and noted that this observation was inconsistent with the 

concentrated-force model, which predicted that dislocations were equally likely to be emitted on 

both (111) and ( 111 ) planes.  We note that this experimental observation is consistent with the 

analysis our model.  Indeed, according to equation (3c), the shear stress on the ( 111 )  plane is 

only 0.26 times that on the (111) plane.  

Our model predicts correct trends and orders of magnitude.  However, we recognize that 

the good agreement with some of the experimental observations may be fortuitous.  Our 

procedure to estimate  is crude, and can be improved by using more advanced model such as 

those due to Rice

ck

19 and others.  We also note two effects that can act in opposite directions:  

thermal activation will decrease the value of , while blunt edge roots will increase the value of 

.  

ck

ck

   We should also remark that, given the uncertainty in the sharpness of the edge root in an 

actual structure, the value of  may have a statistical distribution.  One may as well forego the 

unreliable theoretical estimate of , and simply use the experiments, such as those described 

above, as a means to determine the value of  and its statistical distribution.  The approach is 

analogous to that of experimental determination of fracture toughness. 

ck

ck

ck

13  Once the statistical 

distribution of  is determined by using samples of one set of ck σ , h and L, one can predict the 

statistical distribution of critical values of σ , h and L by using equation (2).  The procedure is 

analogous to a procedure to evaluate failure statistics of interconnects due to electromigration.20

 In summary, we have described a method to analyze dislocations emission from sharp 

features in strained silicon structures.  The method predicts the correct orders of magnitude of the 
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critical stress, and gives a scaling relation between the stress level and feature sizes.  These 

predictions call for more systematic comparison between the theory and experiments.  Our 

approach can be applied to other crystallographic orientations, material combinations, and sharp 

features.  The estimate of  may be improved significantly.  The approach may ultimately 

contribute to the design of strained silicon devices.   

ck
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FIG. 1. A SiN film, of thickness h and residual stress σ , is grown on the (001) surface of a 

single-crystal silicon substrate.  The film is then patterned into a stripe of width L, with the side 

surfaces parallel to the  plane of silicon.     )110(
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FIG. 2.  The normalized stress intensity factor, ( )λσ hk / , calculated using a finite element 

method, is shown as a function of the aspect ratio, , of the nitride stripe.   hL /
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